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The problem of time-optimal control is considered in the case where the controlling 
forces are bounded in magnitude and in impulse at the same time. The study is carried 
out with the aid of attainabillv domains. The case where the boundaries of these do- 
mains have plane portions and comers is considered. The problem of optimal control 
synthesis is solved for certain second-order systems with the indicated restrfctions im- 
posed on the controlling forces. 

1. Strt8mrnt of the problem, Let us consider the control system described 
by the following Linear matrix differential equation with real constant coefficients : 

dxldt = Ax + Bu U-1) 
Here 5 = 11 zi 11 , A = 1) aij 11, B = 11 bj, 11, u = 11 us 11 are matrices of order 

(TZ x i), (TZ x LT), (TZ x T), (r x 1) . =pecti=ly. and us = US (t) is a measu- 
able function of time which satisfies the following resuicti>ns simultaneously : 

1% (0 I G MS (M, = const > 0) (4.2) 

r,u,(T)IdvG,O (cso=const>o) (1.3) 
0 

By b, (6 = 1, . . . . r) we denote the s th column of the mauix B (b, # 0 for all * = 1 I 
. ..) r.). Condition (1.2) expresses the boundedness of the controlling force, and condition 
(1.3) expresses (from the physical standpoint) the boundedness of the impulse of the 
controlling force. Inequality (1.3) in certain cases represents the limitation of the pro- 
pellant capacity of a thruster. 

We shall consider the problem of bringing system (1.1) to the origin in the minimum 
time by means of a control which satisfies conditions (1.2), (1.3) (e. g. see [l], and, 
among other things, the problem of synthesizing the time-optimal control. 

When restriction (1.2) alone is imposed, the time-optimal control is, as we know 
@- 51, a relay control (we denote the minimum time in this case by 8 = 8 (x)) . The 
problem of synthesizing such a conuol consists in splitting the space &composed of 
the phase coordinates x1, . . . , x, by the switching surfaces into domains in which the 
controls US (t) assume the values M, and --M, (s = 1, . . . )’ r). once this splitting 
has been effected, the optimal control is known as a function of the phase coordinates 
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u = u’ (x). 
The statement of thr! problem is aitered whem restrictions (1.2) and (1.3) an both 

impas+d. In this case the optimal coatt~l at the inftial instdtnt depends not only on the 
initia&tate vector 5*, but alsO on the vector co = If C,“Jj, i.e. u =: U. (X0, p). At 
a present instant f we have 24 = u (2, C), where Z is the state of the sysam at the 
instant f, and where the vector C = 11 CS f/ dmracterizes the restricrion 011 the imp&e 
at this instant, M 

s I 4 (r> I dt G c, (s= 1, . . ., r) 
t 

kt us introduce the coordinate rnils (s = 1, . . . . r) defined by the differential equa- 
tiOtl 

%W 
- = - I us (f) / dt 

The solution of this equation is of the form t 

Gw (V= G+s (0) - 1 I us (t) I a 

0 

Let &+s (0) = C,?Expression (1.3) then ybkis 

r : ~~Sf~)l~=%*S~~> 

i.e. the quantity 5,,, (r) h c aracterizes the impulse or the “propellant capacity” of the 
engine which produces the force 1~~ at the present instant t. 

The problem of syntheairting the optimal controi consists in constrtuxfng the function 
24 = 26 (zl, .,., I~, zntl, . . . . I,,,). It is easy to see that in the domain 

e(%,...,3,)<+~,i+s (s= 1, . 1 ., r) (1.4) 

of the space X,,, consistfng of the phase &ordinates Xl,.. ., x,, and the coo@inates 
5 n+l? *‘*f X nir the optimal conool doa not depend on the coordinates x~+~ (s= 1, 
. . . . r). Synthesis in this domain, i.e. in fl.4). can be effkcred by means of t&e function 
u = ZL’ (z). 

a, Attrlnrbiflty domrinr. The solution of Eq. (1.1) is of the form 

x (t) = &x0 + i eA+‘)Bu (t) dt 
0 

Let 3 (t} = 0 for d = T. Equation (2.1) then yields 
T 

- x0 = 
s 

e--As Bu (r) dt 

suppose that T 
!I U, (~),&&2~+P= const (s= 1!. . ., r) 

0 

We denote the set of m&asutable functious us (8) which satisfy conditions (1.2) and 
(2.3) by Bb (Tf. The set of vector fuuctions u(t) = 11 us (Qsu~ that us (t) GE QS (0 
we denote by Q (7’). We also induce the notation 

T 

u, (T) = s e*‘b,u, (z) dr, of (2’) z i u, (7’) = &~Bu (t) dz (2.4 
0 8x1 0 
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and consider the attainability domains 

0, VI = (us m: us @I E Qs (T)L Q (T) = 2 Qs (0 = (0 (T): 24 WE Qm 
S==l 

in the space X, . 

Each of the sets Qs (T), and therefore the attainability domain Q (T), has the follow- 
ing properties. 

1’. Closure. 2’. Convexity. 3’. Qs (T) “grows” with growing T, i.e. Qs (T,) E 
E QI; (T,) if Tl < T2. 4’. Symmetry with respect to the origin. 

mopefiy 1’ follows rrom the fact that the set Q8 (T) is a linear map of the set R, (T), 
which is weakly compact in itself in the space L, [O, 2’1. The latter can be proved by 
making use of the fact that a sphere is weakly compact in itself in the space L, IO, Tl 

(see pJ). Properties 2’. 3.. 4’ can be proved easily p, 7, 83. 
Let us take an arbitrary unit vector ?J (1 x n) and coustruct the support hyperplanes 

of the set Q (T) orthogonal to the vector 7. Properties 2” and 4’ imply that there are 
two such plaues and that they are symmetric to each 
other with respect to the origin (Fig, 1). The distance 
d, (T) from the origin to these planes is given by the 

expression [8, 91 
T (2.5) 

4 (T) = -Ty~.T$w(T)) = ma= \ rlcA’Bu (4 dr 
W@(T) ; 

hoperties 1’ and 2’ imply that the set Q (T) consists 
of those and only those points x whose coordinates satisfy 
the inequities 

lrl~Kd,VI (2.6) 
Fig. 1 for all possible unit vectors r~. 

The definition of the set Q (2’) implies that system 
(I. 1) can be brought to the origin in the time 2’ if and only if 2” E Q (ii). By taking 
the limit as T -+ 00 in relations (2.5) and (2,6), we can find the controllability domain 
Q @I. i. e. the set of points of the space X, from which the system can be brought to 
the origin by means of a control which satifies conditions (1.2). (1.3). 

3. Determlnrtion of the dittraca, d,(T). Ifthe function u (t) is 
subject to restrictions (1.2) (restrictions (2.3) do not apply), then the integral 

attains its maximum under the control 

u, (t) = M, sgn [ye-Alb,] (s=i,. I ., r) (3.2) 
If MsT G r,,Ts (s = 4, . . . . r), then the contro1 defined by (3.2) satisffes the rela- 

tion u (t) E 52 (T). 
Now let us consider the problem of the maximum of the functional .I, (u, qt T) 

under the assumption that 

We introduce the notation 
MST > xn+s (3.3) 
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E=* = {t E [O, T]: [ ?y?-=b, 1 > s,) (a, =const) (3.4) 
Fa* = (t E [O, T]: [ije-A’b, 1 = Qs) 

GUS = (t E [O, T]: 1 qcA’ b, I < a,> (Es” -I- 8” = to, Tl) (3.i) 

n, (k Q,) = 
{ 

M,sgn fqe-A’b,] for t E Eas 

0 for t E GUS 
(3.6) 

By @ we denote the Lebesgue measure PO] of the set @ E [0, T]. 
The function thr-A%, is analytic, Hence, either 1 q.rnfbl 1 s 6, for some 6, > 0 for 

all t E [O, 2’1 , so that E@* = F’s = [O, T], p.@ = pp@ = T I or for all 3, > 0 
the equation I qe-A%, 1 = 6, is valid only for a finite number of ~pointa t e f0, Tf 
5othat pP=O, 

FirSt,stppose that pF* = 0 for all oB > 0. It is easy to show that in thh case the 
quantity pE% varies continuously and monotonically from T to 0 as the quantity os 
varies from the minimum value of the functfon 1 qe-*‘bs 1 in the interval [O, TJ toits 
maximum value in the same interval. Condition (3.3) implies thaE there exists a unique 
aso for which 

From (3.6) and (3.7) we see that us (& a,“) E Q, (T). In [8,11] ~~~n~ similar 
to those used to prove the von Neumann-Pearson lemma p, 7f are adduced to show that 
the control us (t, a,“) (and only this control) maximizes the functional J, (u, q, T). 

Let us BssulncI now that pP* = T for some us > 0, i.e. that 

qe- A’b , zs D, = co& (6s = I Da I) 

III this case all the controls from the set ob (71, T) of functions satisfyiag inequality 
(1.2) and the conditions T 

[DA (41> 0, 
art maximi2ing control, 

s U, (r) ckz = a+s sgn D, 
0 

We note that expression (3.2) fallows from (3.6) for a, = 0. For this reason we can 
assume that for M, T Q zl%+& 

aa o = 0 (E< = 10, I-1). 
the maximizing control is ~lr (t, %“f, where 

W$ obtain the following expression for the distance d, (T) : 

d, (T) = 2 M, 1 1 qrA’b, } dr (3.8) 
s=1 *=s" 

It can be shown that the distance d, (T) is a continuous function of the vector q and 
of the quantity T, From this and from inequalitfes (2.6) we conclude that the sets 
Q. (T) and Q (T)have the following “continuity” property. 

5‘. If the point n is an intetior point of the set Q. (T), then there exisa a T, < T, 
such that 2, E Qs (T,). 

We note that Property 5’ can be proved by a method quite similar to that used in [Sj 
(p. 88) to prove the anaIogous psoperty under restrlction~ of the type (1.2) only. 

4. Plane portion8 of the boundaria: of the rttrlnrbiifty domain@ 
Q.<F, and 8 (p). Substituting into (2.4) the controls r& (t) which maximize the 
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functionals J, (24, q, T) (8 = 1, . . . . r), we obtain the vector v (T)of the coordinates 
of the point which is commou to one of the two support hyperplanes an0 the set Q (?‘) 
(the point of tangency). Here V, (T) is the vector of the coordinates of the point of tan- 
gency of the set Qd (T) with one of the support hyperplanes of the set QS (2’) orthogo- 
nal to the vector IJ. 

z 
y set Q (T) has a unique point of tangency if and only if all the sets QI (2’) (s = 

, --*, r) have a unique point of tangency. If the equation which maximizes the 
functional JB (u, rj, T) is uniquely defined, then the set Q8 (2’) has a unique point of 
tangency. The maximizing control us (t) is defined ambiguously in the two cases 

T@%, S D 8 = const # 0, MST > G&+8 W 

qe-*-AtbS ES 0 (4.2) 

fn the simplest case (4.2) the functional Js (~1, q, 2’) = 0 for any controls U& (t). 
In this case the set Qd (?‘) belongs entirely to the plane VJZ = 0. A vector 3 for which 
condition (4.2) holds exists if and only if [4# 12) the rank ps of the matrix w, = If b,, 
Ab b, . . . . An-lb, I/ is smaller than n. The set Qs (2”) belongs to the subspace &, of 
dimension p 6. The same situation obtains when restrictions (1.2) alone are imposed. 

In case (4.1) all the controls Z&r (t) E 0, (q, T> are ma~mizing ConDoIs. The set 
P, (q, T) of points of tangency is defined by the expression 

P, (q, T) = (v, (T): % (0 E (4 VI, TH 
This set belongs to some hyperplane n, ($ orthogonal to the vector %‘j, 
The set P, (q, T) has Properties I”, 2”, 3”. it is easy to show that the set PI (11, T> 

is( ps - 1 )-dimensional. For example, if QI =1 n, then the n-dimensional boundary 
of the set QI (T) contains ( n - 1 )-dimensional plane portions, i. e. the set QI (T) 
is not strictly convex, This situation cannot exist if resrrictions (1.2) alone are imposed, 
consequently the set QI (2”) is always strictly convex @J. 

The set P, (q, T) has Property 5’. In other words, if o is an interior point of the set 
Pa (q, T) in the plane II, (q), then there exists a Tl < T such that tl E P, (q, T,). 

Let us take an arbitrary point belonging to the boundary in the plane n, ($ of the 
set P, (q, T) and construct a support hyperplane of the set P, (q, T) at this point, 
There is an infinite number of such planes in the space X,, . Among them is a piane 
X such that the vector ~~or~ogonal to it varies arbitrarily little from the vector of but 
does not coincide with the latter. It is possible to ensure that 

s&P PI e-A’b,l = sgn fqe-*t b,] = sgn D, for t E fO,TI 

Hence, for vectors r)’ sufficiently close to the vector q the controls uII (f} E a, (T> 
which maximize the functional J, (U, q, T) also belong to the set o,, (q, T). The 
points vS (T) resulting from these controls belong to the set P, (Q T). 

The support hyperplane of the set Qd (Tj which is orthogonal to the vector q’ cannot 
lie closer to the origin than the plane n. On the other hand, this support hyperplane can- 
nor lie further than the plane n from the origin, since it contains points from the set 
P, (?J, T). Hence, this support hyperplane coincides with the plane n. 

We have thus proved that a nonunique support hyperplane of the set QI (2’) exists at 
the boundary points of the set P, (q, 2’); in other words, the boundary points of the set 
Ps (‘q, T) are “comer points” for the boundary of the domain Qd (T), 

The dimension of the set Q (r) is equal to the rank R of the matrix W = 11 WE, . . . 
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l .*,w 11 7 , i.e. the set Q (T) lies in some subspace XR of dimension R. 
SuppcrSe that for SOme VeCtop q E Xzt conditim (4.1) hold for 8 = 1, . . , , r, and 

conditions (4.2) for 8 = rl + 1, . . . , r. We introduce the notation 

p (% T) = i EJ (% T), P,(%T)= Q,(T) fs=rl+2....r~) 

The distance d, 7; does not depend on I ; we denote this distance by d, (da # 0). 
The set P (rit T) lies in the plane n (tI) (*X = C&J. Its dimension does not exceed 
R -LThesetP(q, T) ,astheset Pa (q, T),~kssesPropeniu1’,2’,3*,5”. 
The boundary points of the set P (7, T) are corner points for the boundary of the domain 

QV"h 
6, Thr, oprirnil Qoatrul. Ut the initial state X’ E 0 E X8. We denote 

by T” the ~mum value of T for which aa=Q (T),In other words. T” is the minimum 
value of 2’ for which there exists a control u (t) E 0 (Q such that relation (2.2) 
holds. Property 5’ of the set Q (T) implies that the point ti belongs to the boundary 
of the set Q (T”). Let us consuuct in the space XR the support hyperplane of the set 
0 (T”) which passes through the point X0. This plane splits xn into two halfqaues~ 
Let @E XR be ibex vtcc~r orthogonal to this plane and directed into the half-spa= 
where the set Q (r) is situated. The time-optimal control ciearly maxfmiess the 

integral f (U, q(t), T”). 
Suppose that for all s = 1, . . . . r the control which maximizes the functional 

JI (u, q@, To) is defined arnbi~~ly* i.e. that 

?pA+‘b,35E * J eonst #=o, MJ’” > zn+t (1d,....ry) 

$%--%, f 0 (s = r:“’ + 1, . I . , r.) 

Then X0 E P (~$1’~ T”) E n (+). property S* of the set P (q(l), T) imp&es 
that the point X0 belongs to the boundary of the set P ($I), T), i.e. that it is a corner 
point of the boundary of the set Q (T”). This means that at the point z” we oan con- 
struct another support hyperplane of the set Q (?‘@) wfth the orthogonal vector ‘rl(f) E 
E XR (q(*)+ @). If the maximizing controls for all s are defined ambiguously for 
the vector qt=* as w&I, then 9’ E P (q(a), p) E Il (r,C*g, where n ($*I) is a 
hyperplane which does not coincide with n (@o). This means, In turn, that the point 2” 
belongs to the set P (q@, To) x P (ye), To) of dimetltion not higher than R - 2 ; 
moreover, it belongs to the boundary of this set. This makes it possible to coristhtct at 
9 another support hyperplane of the set Q (Tg with an 0~~~ vector q@) E XB 
(the vectors q(l), Y(S), $8) are linearly independent). Suppose that by ~entinuing this 

pro&~ we hav$ succeeded in constructing the linearly independent vectors If@) E XR 
(k = 1, . ..) R) for each of which 

q@kA’&, = D:“’ 5 coast # 0, &fJ’“)X~,,, (a=&.~;~)) 

q(4s--%l rnn 0 (0 = ‘1 (k)+ 1. . . . , r) 

since b,# 0 (8 = 1, -*-, t), it fo%ows that for every s there exists a Zc for which 
q(k),+tb* + 0. Then M,?” > &n+r for s * 1, . . . . r; in other words, 

T”>N= mix (~+sif~sl 
1ce 
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The set Q8 (T) (S = 1, ..-, r) is a segment which “grows” as T varies from 0 to 

X =.+a t M,, and remains constant for T 2 X*+S i MS. The set Q (T) is a ~lyhedron 

which does not depend on T for T > iv. From this we infer that the optimal time 

To < N, which contradicts what we said previously. Hence, in constructing the vectors 

t’J(‘) we encounter a k < R such that the maximizing control remains uniquely defined 
for at least one value of the index’ s. Let this control Us0 (t) (which is optimal) be 
defined uniquely for S = 1, a.2 rt. As is evident from Sect, 3 of the present paper, the 

control u,* (t) = us (t, cr,*) (s= 1, . . . . fr) is defined by relations (3.4)-(3.6) in 
whichT= T”. 

If ~1 = f, then the optimal control is defined completely. let us suppose that rl < r 
and find the controls u.~~ (t) (s = r1 + 1, . . . . r) for which Eq. (2.2) holds when T = To. 

To this end we substitute the resulting functions us0 (t) (s = 1, . . . . rl) into (2.2) and 
replace (2.2) by the relation 

The set 

Q"m = 2 Q, (T) 

has Properties lo-5’. We denote by F the minimum value of 2’ for which E” E Qr’ (T); 
clearly, F < p. The point go belongs to the boundary of the sei Qrl (T$ As above, 
we can prove that there exists a support hyperplane of this set which passes through the 
point E” with a vector q such that the maximizing control is defined uniquely for at 

least one of the sequence rl + i, . . . . r of values of the index s . If the maximizing 
control can be defined uniquely for all I = rl + 1, . . . . r then the controls which realize 
Eqs. (5. I) for T = To can be taken in the form 

for O’<t(Tr 

for Tl<t<TO (5.2j 

Here the function us (t, us’) (s = rl + 1, . . . . r) is defined by relations (3.4)-(3.6) in 
which T = Ts. 

For Tr < T” the controls u&) (s = r, -I- i, . . . . r) which realize Eq, (5.1) for T = To 
are not unique and can be defined not only by means of formula (5.2). 

If the maximizing control is uniquely defined only for s = r, + 1, . . . . r, (r, < r), 
then to determine the controls uIio (2) (s = r2 -I- i. . . . . 
for s = 

r) we must substitute controls (5.2) 
r, + i, . . . . r, into (5.1) and develop an argument similar to that above. Prom 

ceeding in this manner, we can find all the controls usa (t) (s = 1, . ..) r) which realize 

Eq. (2.2) for T = T@, and thereby determine the optimal control for the state 9. 
Thus the optimal control u,* (t) assumes the values -M,, 0, hf,, The problem of 

synthesis consists in splitting the space Xn+, by the switching surfaces into domains in 
which the control assumes the appropriate values. 

6. Second-order ryrtam, (*).Consider the system 

*) The following students participated in developing the expressions appearing in this 
section: A. Ershov. V. Trofimov, S. Naumov, N. Gorushkina and V, Karandeev. 
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Her? P 8: 1, 
that M = 1. 

so we omit the index S. Without limiting generality we can assume 

First let h = Y = 0 ; then we have 

qtVb=siaqi--coscp (oea Q = ql, sin Q = qs) (6.2) 

Let us COfHImxt the attainability domain Q (I”) for T > zS. 
Let Q # l/3 no cawing out mm ekmenv operations, we find that the set Eo’ 

con&u3 of the segments 
IT - =3r Tf for tgQ6’/3(T-23) 

IO, t&W--‘/*IT - 3311. [ tgQ + a/* (T - Is>, T] for ‘/a (T - zt) < tg Q < ‘/a (T + z3) 

10, X31 for Va iT + 4 6, tg9, 

Hence we find that 

ff - ‘,3n < Q < arctg r/3 (T - 2*)]3 (6.3) 
for O(t(T-_rs 

for T - t3 $ t < T 
(6.4) 

i 
u(t,r”)= o 

i 

for OGEtG;z3 

for z3<tGT 

For r/3 x < Q < 3/3as the control Y (t, a’) can be obtained by multiplying functions 
(6.4). (6.6), (6.8) by -1. Thus, by virtue of the monotonoudtlGsJ of function (6.2) it turns 
out that the control u (t, 8) aasumcs on [0, T] each of the three values - 1, 0.1 not 
mare than aice. 

For the dfstance a,, (2‘) we obtain the expression 

i 

+.r3(2T -as)ooSQ -z3sinQ under condition (6.3) 

(tgQ -T)SinQ+‘/3[Ta-113(T-~a)“~C~Q under condition (6.5) 

d* P) 3 23 Sin Q - I@33 00s Q under condition (6.7) (6.2) 

3% for Q=$+iX 

The boundary of the domain Q (T) is the envelope of the straight support iines. This 
qrvelope can be readily determined fkom expressfon (6.9). It turns out that the domain 
Q (T)' fs bounded by the two straight lines 

and by the two parabolas 

Figure 2 shows the domains Q (2’) at I?’ = 1.0. 1.5, 2.0 for XS = 1. At T > $8 
the boundaries of these domains have two plane portions and four eorne~ poinfs. The 
conuo~ab~~~ domain q which results from Q (3’) as T --I- a0 is the sat of points 
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iying between straight lines (6.10). Moreover. the domain Q includes the saaighkline 
segments 

_^___- xl < -‘ir, a?, z, = 5s 

5 > % &, %=-x8 (6.li) 

(the thick segments in Fig. 2). 
For points ~~n~g to Q (f’) for T < 38, 

the optimal control is a pure relay control 
and the switching line is the curve [5] 

x, = - t/s 9 I % I (6.12) 

Making use of expressions (6.3)-(6.8), we 
can find the value u (t, 0”) of the optimal 

Fig. 2 
control for t = 0, which enables us to solve 
the synthesis problem. It turns out that 
u (0, o”) = 1 on the set of points satisfy- 
ing the conditions 

Xl< - ‘/a %I Lz; 1, 1 3 f < X8 (6.43) 

OI the conditions (6.14) 
51 = - l/2 x2 I 52 II -48 < 32 < 0 

On the set of points satisfying the conditions 

2, < -l/s 5s2, X2 = X9 (6.15) 

we have u (0, 8) = 0. Since the phase 
portrait of an optimal system is symmetric 
with respect to the origin, we can readily find 
u (0, 8) at the points symmetric to the 
points of set (6.13)-(6.15). Figure 2 shows 
one of the possible optimal trajectories (curve 

Fig, 3 ABCO). 
Considering relations (6.10)-(6.15) in the 

half-space xa > 0 of the space &and knowing the value of u (0) at each point of this 
half-space, we can visualize the complete pattern of optimal control synthesis. Figure 

3 shows the synthesis pattern and the possible optimal trajectory ABC0 (Fig.2 shows the 
projection of this trajectory on the plane 5s = 0). 

Now let us consider system (6.1) for h # 0, v = 0. In canonical variables (for which 
we retain the symbols q and q) this system assumes the form 

*s-e hz, + q, +s = U 

Omitting the details presented in our analysis of the case I = 0, we shall merely 
describe the results. 

As in the case h = if, the domains Q (T) for 2’ > 5s have two plane portions and four 
comer points. For A’< 0 the controllability domain Q consists of points satisfying the 
condition I =, I < 23 (6.i6) 

and also of points belonging to certain portions of the boundary of set (6.16), For x > 0 
the domain Q is also bounded by the curves 
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=1 = - I.-$ -& A-% {I - exp [- I/.& (2s f +)I) (6.17) 

The points of these curves do not belong to q. We shall not derive (6.17) because of 
lack of space. 

The pattern of optimal control synthesis in the half-space x3 > 0 of the space Xs for 
i # 0. is qualitatively similar to the pattern for h = 0. The role of surface (6.12) in 
this case is played by the surface [S] 

31 = - &-*zz + h-l 11 - exp f- h 1 2, I)fsgnxa (6.18) 

The optimal control u (z~, zs, ~a) = 0 at the boundary points of the set (6.16) which 
belong to the domain Q but do not belong to surface (6.18). The optimal control 
ZJ (XI, z,, 29) = 1 at points of domain (6.16) lying to one side of surface (6.18) and 
on that part of surface (6.18) which belongs to Q . At the remaining points of the domain 
Q we have u (a+ z,, 5s) = - 1. 

Let us consider system (6.1) for h = 0, Y ( 0. Without limiting generality we can 
assume that v = -1, whereupon system (6.1) becomes 

* 
z, = x2, % =-q+fu (6.19) 

The function ?$YAfb is of the form 

qe-Afb = sin (Ip - t) (6.20) 

In contrast to the preceding examples, the identity 1 qc-” b 1 B u does not hold for 
any Q regardless of the value of u = const. Hence, (6.20) enables us to define the con- 
trol 1z (t, a”) uniquely for any Q, 

\ agn [sin (Q - rtl 
u(t, 53 = \ o 

for i§in(Q -41 26” 

for 1 sin (‘p - b) / < fP 
(6.21) 

and the boundary of the domain Q (T) has no plane portions. 
The problem of minimizing integral (1.3) for 1 u I< 1 is solved in 1133 fat h = v = 0 

and in n4] for h 31 0, Y = - 1 . The optimal control in this problem has the same 
structure as control (6.4). (6.6) and (6,2X). Let 

fk, is the whole part of the expression in square brackets), ks is the number of zeros of 
the equation f sin& 1 PI: ff, where 8 = rp - t in the interval fq - T, cpf. Let us suppose 
that 1 ‘p 1 <I/? n ; then co satisfies one of the following pair of relations : 

2kl =i k,, X8 = (x - 2arcsina”)k, (6.22) 
2k, = k,, XI = T- 2k,arcsinu” 

2k, = b - 1, q = xk, - (2k, + l)arcsinu“ + cp 
2k, = k, - 1, xs= T--q- (2k, f 1) amincr” (6.23) 
2& = k2 - 2, x, = T - 2 (k, + l)orcsino” 

These relations can be readily established by considering Fig.4, which shows the graph 
of the function 1 sin 6 1. This gtaph represents the case cotresponding to condition (6.23). 
In this case the set Ea* consists of kl segmnts of bngth a% -* 2 arc&no’ and of one seg- 
ment of length T - ‘p - nk, - arcainoO (the set E a’ is indicated by the thick lines in 

Fig. 4). 
t,.et us find the conuollabil~~ domain Q. As T 4 CQ we have U’ - 1% k, -+ CQ. Let 
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T--c-p= nk, + I/* n ; then (as we see from Fig. 4) for each fixed tp for sufficiently large 
T the quantity uD satisfies relations (6.23). After some simple operations we arrive at 
the following expression for such values of T : 

d, (T) = i sin (cp . 
- 7) u (z, a’) dz = (2k1 + 1) sm 

* 

2k1=; i’ 

This implies that 
;%d, (T) = ,‘ll% + 1) sin 

1 
2k:=,i =zs 

For lrpl = Vzn we obtain the same result. 
Thus, the controlkbiliv domain Q is the interior of a disk of radius .z3; in other words, 

it is described by the inequality 

zrs + Q2 < Q2 (6.24) 

The fact that the domain Q can be 

of a cone. 

Fig. 4 

nothing other than a disk also follows 
d! from the fact that the phase trajectories 

of system (6.19) for u (t) zz 0 are cir- 
cles. In the half-space 2s > 0 of the 
space X8 domafn (6.24) is the interior 

Now let us consider the synthesis problem, 
To this end we find on the plane Xs the set D, of the points Z* at which the optimal 

control at the initial instant is equal to zero, Let us suppose that 1 cp 1 < l/% II. Consider- 
ation of Fig.4 then shows that u (0, a0) = 0 for those and only those values of T and cp 
for which jspf < arcainu”. This inequality is valid only under condition (6.22) or (6.23). 
To determine the set Do we must substitute function (6.21) into (2.2) with allowance 
for conditions (6.22) and (6.23). Making use of the symmetry of the phase portrait of 
an optimal system, we find that the set of points z E Db satisfies the relations 

v*j 

T 

sin 7~ (z. a“) dz, ~2 = F 
s 

cos zu (7, a’) dr (6.29 
0 0 

under condition (6.22) the corm01 u (t, aof = 0 for 

ark, - aresing + cp < t < nk, + arcsina” $ cp 

Hence, as we see from (6.25), this condition need not be considered. We therefore 
assume that T and a0 in (6.25) satisfy condition (6.23). The set Do is biparametric: 
one parameter is the quantity cp satisfying the inequality fpPf < arc&n@; the other para- 
meter is either T or OD. Substi~t~g the relations arcsinff = k rp into (6.2~ we obtain 
the boundaries of the set Do. 

Setting ar&no’ = Q, and carrying out certain appropriate operations, we obtain 
the parametric equations of one of the boundaries of the set ,D,, 

Setting arcsin a” = -9, 
b 

, we obtain the equations of the other boundary of the set 
0' 
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q = =j= (kl cos 2cp + kl + 1 +(- lp+l cos {x8 - 2kxcp)) (6.27) 

3% = F (k, sin 2~4~ -j- (- t)b*+l sin (zS - 2k@) cp E (- ‘12 m 

The portions of curves (6,26),@.29)are smooth in those ranges of rp.avalues in which 
kI remains constant. 

As 8, - 1/e expr8ssions (6.26) yield ts -, $ x3, z, 4 0 ; as cp -, - V,n expressions 
(6.27) yield z, - f zs, x1 -, 0. For cp = 0 Eqs, (6.26) and (6.27) assume the same form 

fi = F [%I + i + (- i)“‘f’ cos %I. 2% 5 3: [ (- l)k*il sin la] (6.28) 

Here 

&=[-$] 

Setting ;tr, = nkz + a, where 0 < a < x, we find that 

2, = 3 12k, + i - cos a], x, - f sin a (6.29) 

Considering za as a parametar, we f3nd that curve (6.28) or (6.29) constitutes the 
switching iine L (see ES]) for system (6.19) under the condition ju] < i alone. Con- 
seqwntly, for k* = eoibst all four curves (6.26). (6.27) begin at the line L for cp = 0 
and terminate at chc boundary of the domain Q as (rpj -+ 1/$c . 

Fig. 5 Fig. 6 

In Fig.S(for + = */an ) the ~~~bi~~ domain 0 is split by curves (6, Zfi) - 
(6.28) into domains where the optimal coutrol.ac the initial instant is equal to -1, 0 
(shaded area), and 1. 

Considering relations (6.24). (6.26)-(6.28)inthe half-crpace z3 > 0, we gain a full 
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understanding of the optimal control synthesis pattern, This synthesis pattern appears in 
Fig. 6 (Fig. 5 shows the projection on the plane ;rj, zs of the cross section za = *~sx). 

Optimal control synthesis for system (6.1) in the case v = 0 differs from the case 
L = 0, Y < 0 by the fact that for Y = 0 the set of points where u I 0 is of meas- 
ure zero in the space X,, 

BIBLIOGRAPHY 

1. Singh, R. N. P,, Functional analysis approach to optimal control problems with 
multiple constraints on the controIIing function. Internat. J. Control VoI. 9, 
Nl, 1969. 

2. Pontriagin, L. S. I Boltianskii, V. G, , Gamkrelidze, R, V. and 
Mishchenko. E. F, , The Mathematical Theory of Optimal Processes. 
Moscow, Fizmatgiz, 1961, 

3. Bellman, R,, Gticksberg, I. and Gross, 0.. Some Problems ofthe 
Mathematical Theory of Conuol Processes (Russian Translation). Moscow, 
Izd, Inost Lit., 1962. 

4. Krasovskii, N. N., Theory of Motion ControI. Moscow, “Nanka”, 1968, 
5. Boltianskii, V. G., Mathematical Methods of optimal Control. Moscow, “Nau- 

ka”, 1969. 
6. Liusternik, L. A. and Sobotev, V. I. , Elements of ~ctional AnaIysis, 

Moscow, “Nanka”, 1965, 
7. Beckenbach, E. and Bellman, R., Inequalities. Moscow, “Mir”, 1965. 
8. Formal’skii, A. M., ControllabiIity domains of systems with restricted control 

resources. A~oma~a i Te~mekhan~a N3, 1968. 
9. Eaton, H. H, , An iterative solution to time optimal ConuoI. J. Math. AnaL, and 

AppL VoI.5. Ns2, 1962. 
10. Shilov, G. E., Mathematical Analysis. Moscow, Fizmatgiz, 1961, 
11. Gabasov R. and Gindes, V.B., On optimal processes in Linear systems 

with two restrictions on the controlIing forces. Avtomatika i TeIemekhanika 
Vol.26, Ng6, 1965. 

12. Kalman, R. E., OR the general theory of conuol systems. In: Proceedings of 
the First International Congress of the International Automatic Control Fede- 
ration, VoI. 2, Moscow, Izd. Akad. Nauk SSSR, 1961. 

13. Athans, M. and Falb, P., Optimal Conuol. McGraw-Hi& New York, 1966. 
14, Krasovskii, N. N, , Lectnres on Conuol Theory, ed. 1. Gor’kii Ural University, 

Sverdlovsk, 1968. 

Translated by A. Y, 


